
ARPA ORDER NO.: 189-1

7P1 0 Information Processing Techniques

R-2176-ARPA
-

December 1977

The CRT Text Editor NED -
Introduction and Reference Manual

Walter Bilofsky

A report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

ARPA ORDER NO.: 189-1

7Pl 0 Information Processing Techniques

R-2176-ARPA

December 1977

The CRT Text Editor NED -
Introduction and Reference Manual

-

Walter Bi lofsky

A report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406

The research described in this report was sponsored by the Defense Advanced
Research Projects Agency under Contract No. DAHC15-73-C-0181.

Reports of The Rand Corporation do not necessarily reflect the opinions or
policies of the sponsors of Rand research.

Published by The Rand Corporation

PREFACE

Members of Rand's Information Sciences Department are engaged in an ongo

ing research program on advanced intelligent terminals. The program is funded

and coordinated by the Information Processing Techniques Office (IPTO) of the

Defense Advanced Research Projects Agency (ARPA). An objective of the program

is the improvement of the interface between man and computer.

This report documents a CRT text editor, called Ned, which is one of the

software tools developed under this program. The report is intended to be an

introduction to the Editor and a reference manual for experienced users. Portions

of the report provide a description of Ned and summary of its features for a more

general audience.
Ned was designed and implemented by the author, a member of the staff of Bolt

Beranek and Newman, Inc., under subcontract to The Rand Corporation, whose

Information Sciences Department conceived and sponsored the project.

iii

SUMMARY

A critical element in the use of computers to support document preparation,
software development, and word processing is the interface between man and
machine for the entry and modification of textual data files. In recent years, the
cathode ray tube (CRT) terminal has grown more popular as an interface as it has
become more sophisticated and less expensive. In most applications, the CRT termi
nal is used only to simulate line-at-a-time devices such as teletypes. However, this
device is also capable of displaying textual documents in page form, and can alter
its display rapidly enough to allow interactive text editing.

Over the past few years Ned, a text editor utilizing the full capabilities of the
CRT display, has been under development and in use at The Rand Corporation. It
has been used primarily as a general text editor for system software development,
and has also been of substantial benefit in the preparation of documents and reports
by both technical and secretarial staff. The system has proven to be easy to learn
and use.

The Ned editor runs on the PDP-11 series of computers under the UNIX operat
ing system. It uses a CRT display to provide a two-dimensional window into a text
file. The file may be altered by typing new material over the old. Lines, characters,
and rectangular portions of text may be opened, deleted, and moved about, much
as documents are edited with scissors and paste. Interactive text processing oper
ations are provided, including paragraph fill, right-margin justification, and hy
phenation. The set of operations may be expanded by user-provided or system
provided text-processing programs which are invoked interactively from within the
Editor. The screen may be divided into several editing windows to simultaneously
edit more than one file, or different portions of a file. The command language·is
based on function keys; thus, the terminal keyboard itself provides a list of editor
functions.

This report contains a general description of Ned, a hands-on tutorial for begin
ning users, and the reference manual for Ned.

v

ACKNOWLEDGMENTS

Ned is based on concepts originally devised elsewhere by Edgar T. (Ned) Irons,
currently at Yale University. The design was influenced by suggestions from many
members of Rand's Information Sciences Department, and especially from Peter
Weiner, who conceived the notion ofimplementing Ned at Rand, and who modified
the program during its evolution. The error message chapter of this report was
extended from earlier documentation by Suzanne Landa. The author is grateful to
Paul Castleman of Bolt Beranek and Newman, Inc., for encouraging his participa
tion in this effort.

vii

CONTENTS

PREFACE. iii

SUMMARY... v

ACKNOWLEDGMENTS . vii

PART I. INTRODUCTION TO NED
Chapter
1. HOW TO USE THIS MANUAL . 3

2. BRIEF DESCRIPTION OF NED . 4

3. HISTORICAL DEVELOPMENT OF NED.......................... 5

4. NED TUTORIAL. 6
4.1. Introduction to Computers and Text Editors 6
4.2. Accessing the PDP-11...................................... 6
4.3. Accessing Ned . 7
4.4. First Exercise: Exiting from Ned.......................... 8
4.5. Second Exercise: Cursor Positioning Keys 8
4.6. Third Exercise: Typing . 8

4. 7. Fourth Exercise: Moving the Window . 9
4.8. Fifth Exercise: Moving Lines Around...................... 10
4.9. Summary..... 11

PART II. NED REFERENCE MANUAL

5. REFERENCE MANUAL: INTRODUCTION 13

6. RUNNING NED: INITIAL ARGUMENTS 14

7. MARGIN CHARACTERS ... 15

8. CURSOR POSITIONING KEYS.. 16

9. OTHER SPECIAL KEYS . 17
9.1. Insert Mode: INSERTMODE . 17
9.2. Backspace: BS . 17
9.3. Deleting Characters: DELCHAR . 17
9.4. Inserting Control Characters: QUOT. 17

10. COMMAND LANGUAGE. 19
10.1. Arguments to Commands: ARG . 19
10.2. Cursor Defined Arguments. 20

11. THE FUNCTION KEYS . 21
11.1. Vertical Window Motion: PAGE, LINE, and RETURN....... 21
11.2. Opening Lines and Areas: OPEN . 22

ix

X

11.3. Deleting Lines and Areas: CLOSE. 22

11.4. Replicating Lines or Areas: PICK :. 23
11.5. Placing Copies of Text in the File: PUT................... 23
11.6. Leaving the Editor: EXIT. 24

11.7. Searching for a Text: +SCH and -SCH.................. 25

11.8. Moving to a Specified Line: GOTO . 25

11.9. Editing and Creating Files: USE . 26

11.10. Saving Files without Exiting: SAVE..................... 26

11.11. Creating More than One Window: WIN.................. 27

11.12. Changing Windows: CHWIN..... 28

11.13. Setting and Clearing Tab Stops: S/RTAB 28

11.14. Editing Wide Lines: LEFT and RIGHT. 29

12. INTERACTIVE TEXT PROCESSING. 30

12.1. Fill, Justify, and Replace: A Quick Introduction........... 30

12.2. Arguments and Effect of EXEC. 31

12.3. The Replace Function: Rpl. 31

12.4. Justifying Text Paragraphs: Just...... 31

12.5. Filling Text Paragraph: Fill. 32

12.6. Multiple Spacing and Indentation: Space 32

12.7. How EXEC Works.. 33
12.8. More General EXEC Capabilities . 33

13. RECOVERY.. 34

13.1. Old Versions of Files: ".bak" Files........................ 34

13.2. Recovering Deleted Text: The # File..................... 34

13.3. Recovering from Crashes: The Keystroke File 35

14. MISCELLANEA.. 37

14.1. Stopping the Editor in the Middle. 37
14.2. The /re.std File . 37

14.3. Editor Limitations. 37

15. ERROR MESSAGES .. 38

Appendix
A. SUMMARY OF NED FUNCTION KEYS . 43

B. DIAGRAM OF TERMINAL KEYBOARD..... 45

C. INDEX OF CAPABILITIES 46

REFERENCES . 49

INDEX .. 51

PART I. INTRODUCTION TO NED

Chapter 1

HOW TO USE THIS MANUAL

This manual is in fact two documents under one cover. The first, Part I, is

designed primarily as an introduction to Ned, its history and description. Chapter

4 is a learner's guide to Ned, in tutorial form, suitable even for the user who is

unfamiliar with computers and terminals. A reader with no previous exposure to

computers or text editors may find it helpful to first read Sec. 4.1. This section might

be skipped by a person who has had some computing experience. Part II is the
reference manual for Ned, and its use requires familiarity with Ned in particular,

and with computers in general. Hence, depending on his or her objectives and level

of experience, the reader may want to begin with different chapters of the manual.

The beginning user should gain access to a PDP-11 terminal and follow the

tutorial in Chap. 4, trying things out on the terminal.
Ned users with almost any degree of experience may find this document more

valuable as a reference manual, and may make use mainly ofthe function reference

chart (App. A), the Index of Capabilities (App. C), and the Reference Manual (Part
II).

Persons seeking an understanding of Ned who do not have access to a terminal

capable ofrunning Ned may find it most useful to read the brief description of Ned

in Chap. 2, the Index of Capabilities (App. C), and the Reference Manual (Part II).
The reader should be aware of one typographic convention used throughout

this manual. An upper case legend (e.g.,+ TAB) represents the function button that

is labeled by that legend on the terminal keyboard. Thus, "Type OPEN" means

"Press the key marked OPEN." Some of the keys on the keyboard contain both

printing characters and a function legend. The CTRL key is used as a shift key for
typing the functions on these keys. (The only exception to this is the EXIT key, which

does not require a CTRL shift). Sometimes a function key will be described in the

form, "CTRL-X". This function is typed by holding down the CTRL key while

pressing the X key.
While some terminals may not have all the functions marked on the keyboard,

the keys will still perform the functions. The chart in App. B may be used to locate

the function keys.

3

Chapter 2

BRIEF DESCRIPTION OF NED

Ned (the New Editor) is a text editor which allows the user to view and edit
text files in an easy and natural way. This chapter describes Ned's capabilities,
assuming the reader to have a small amount of experience as a computer user.

Ned runs on a Digital Equipment Corporation PDP-11 computer under the
UNIX operating system, using the Ann Arbor 4080D CRT terminal. Outside of The
Rand Corporation, Ned has been modified by users to run on certain other models
of CRT terminals.

Ned presents the user with a picture of the text file being edited, just as it would
appear when printed out on paper. The terminal screen contains a window which
can be moved about the file to show any part of it. Changes are made directly on
the screen and are shown as they are performed. Operations such as typing dia
grams are easy, since the user is free to enter characters at any position on the
screen, rather than having to type text line by line. The command language consists
of function buttons which are marked with the operations they perform. The net
effect is that Ned places the user in direct contact with the document, unlike
line-oriented editors, which interpose two conceptual barriers-a command lan
guage and editing a line at a time-between the user and the document. This makes
Ned easier to learn and use than most other text editors.

Changes can be made to a file by typing directly on the screen. A character is
changed by typing the new character over it. More complicated operations are
possible, such as inserting, deleting, or moving characters or lines. It is possible to
insert, delete, or move rectangular pieces of the document, using the computer
terminal as one would use scissors and paste to edit a paper document.

Advanced features include interactive text formatting, such as automatic fill,
right-margin justification, and hyphenation of text paragraphs. An extensibility
feature allows the expansion of Ned capabilities through the writing ofUNIX filter
programs to process text. These programs can then be used interactively to process
paragraphs of text during an editing session.

The screen may be divided into several editing "windows" to simultaneously
examine or edit more than one file, or different portions of a file.

Ned provides several levels of backup to guard against inadvertent destruction
of files. All lines deleted during an editing session are accessible until the end of that
session. The second most recent version of an edited file is preserved under a
backup name. In the event of a computer hardware or system malfunction, the
editing session can be reproduced, generally without loss of a single keystroke.

4

Chapter 3

HISTORICAL DEVELOPMENT OF NED

This chapter gives a briefhistory of Ned and its predecessor CRT editors. It is
intended to record Ned's development, and not as an exhaustive history of CRT text
editors.

The IDA-CRD (Institute for Defense Analyses-Communications Research
Division) text editor was invented by Edgar T. (Ned) Irons in 1967 to provide text
editing support for software development of the IDA-CRD operating system for the
CDC 6600 computer. The IDA editor is described in E. T. Irons and F. M. Djorup,
"A CRT Editing System," Communications of the ACM, January 1972. The IDA
editor contributed the idea of function keys as an editing command language, and
of using the screen as a two-dimensional representation of the file. For the individu
als eventually responsible for Ned, it was the first, and a convincing, demonstration
of the utility of two-dimensional editors.

The Yale editor "E" was implemented by Peter Weiner in 1970 on a DEC
(Digital Equipment Corporation) PDP-10 computer. It was the successor to the IDA
editor, and proved the practicability of CRT editing over lines of modest bandwith
(2400 baud) on standard terminals. The Yale editor is described in The Yale Editor
"E"-A CRT Based Editing System, P. Weiner, I. Singh, D. J. Mostow, and E. T.
Irons, Yale Computer Science Research Report 19, April 1973.

The Rand editor, "re", was conceived in 1974 by Peter Weiner, based on the
Yale editor. It was initially designed and implemented by the author of this report,
and modified by both individuals as it evolved. The Rand editor is now known as
Ned, which stands for "new editor" and is also a tribute to the inventor of the IDA
editor. Features appearing in Ned but not in its predecessors include multiple
editing windows and interactive text processing using user-provided as well as
system-provided functional modules.

Ned has been in use at The Rand Corporation and other UNIX installations
since 197 4. It is used by technical, administrative, and secretarial personnel in the
daily performance of their jobs.

5

Chapter 4

NED TUTORIAL

The best way to learn about Ned is to sit down with a terminal and try Ned out.
Any explanation will make the editor sound far more complicated than it really is.
On the other hand, just using Ned is really quite easy. Learning to use it is like
learning to use a typewriter. Rather than reading a manual on how to type, one
gets a better sense ofthe machine by sitting down, inserting a piece of paper, and
trying things out.

Accordingly, this introduction for the new Ned user presents a few simple
directions to help get started-instructions for turning Ned on and inserting a sheet
of blank paper, as it were-and a series of things to try out.

The exercises presented below are constructed to expose the user to a basic set
of Ned's features by leading him/her through a sequence of operations demonstrat
ing those features. It is hoped that the user will not feel limited to these steps, but
will feel free to try different functions and combinations as well.

4.1. Introduction to Computers and Text Editors

The purpose of this section is to provide some background concepts and defini
tions to potential users of Ned who are not at all familiar with computers or text
editors.

The computer can be viewed as an automatic file cabinet. It stores many collec
tions of information, called files. A file is analogous to a file folder in a filing cabinet.
Just as a file folder has a name on its tab, a computer file has a file name.

A computer file can contain a program, or numeric data, or textual data. A file
which contains textual data is called a text file. A text file may be used to store a
typed document, such as a memorandum or report.

Typed documents on paper may be edited in several ways: with correction fluid,
with scissors and paste, or by retyping. Text files are edited using a tool called a
text editor. This is a program which lets the user manipulate the text file.

Ned is a two-dimensional CRT text editor. CRT (Cathode Ray Tube) is the
technical name for a television picture tube. Ned uses a CRT terminal-a computer
terminal with a typewriter keyboard and a television-type display. Two-dimension
al means that text is displayed a screenful at a time (as opposed to one dimensional
-a line at a time).

4.2. Accessing the PDP-11

Ned is run from a terminal that has been connected to the PDP-11 system and
logged on to UNIX. The procedure for doing this at Rand is explained here; this
procedure will vary at other installations.

The terminal must be turned on (power switch on the back). After warming up,

6

7

it will display a green underscore character or cursor. The message "User:" should

also be displayed. If it is not, press the RETURN key. If the message still does not

display, the terminal is not connected to the PDP-11; consult an experienced user

for assistance. If the character "%" displays when RETURN is pressed, a user is

already logged on to the terminal and the procedure in the next paragraph may be

skipped.
When the message "User:" appears, type your user account name. If the user

name is acceptable, the message "Password:" will be displayed. Type your account

password. What you type will not appear on the screen, but is nevertheless entered

into the computer. If the password is valid, the terminal may display a short

message of current interest to system users, indicate the last time you logged on

to UNIX, and then indicate its readiness to accept a command by displaying the

character "%".
You may want to learn more concerning the use of the PDP-11 UNIX system

than is within the scope of this manual. The first place to look is in "UNIX for

Beginners," by Brian Kernighan (included in Documents for Use with the UNIX

Time-Sharing System, available from the Rand Documentation Center).

4.3. Accessing Ned

This section explains how to start using Ned from a terminal which has been

connected to the PDP-11 as described in the previous section. If the terminal does

not have all the keys marked with their editing functions, refer to the keyboard

diagram (App. B) to identify which keys perform each function.

The first thing necessary is a "piece of scratch paper" to type on. In other words,

a scratch file is needed. So we need to find a file name that is not currently in use

as the name of an existing file.
See if"fname" may be used as a scratch file name. This can be done by execut

ing a UNIX command which tells whether there is already a file named fname. If

there is not, fname may be used as a scratch file name. If fnr,me exists, another

name must be used.
Type the UNIX command "ls fname" followed by the RETURN key. (UNIX

commands are typed using only lowercase letters; ls stands for "list".) The system

responds either with "fname", meaning there is a file named fname, or with "fname

not found", meaning there is no file named fname. We will assume the name

"fname" was available, and proceed. If there is a file named fname, try "ls gname"

or "ls newfile" or any other name until some name is discovered which is "not

found" and therefore is free for use as a scratch file name. Wherever "fname"

appears in the exercises below, use your scratch file name instead.

Cursor. Notice that there is an underscore character on the screen to the right

of the % character. This character is called the cursor. It indicates the position on

the screen at which the next character typed will appear.
To begin a Ned session, type the UNIX command "ned fname" followed by the

RETURN key. (Use lower case: "ned", not "Ned".) Ned displays a message at the

bottom of the screen saying "Hit USE (CTRL-B) to make: fname." Type the USE key

by holding down CTRL (like a shift key) and typing b. This creates file "fname". Now

Ned is ready for experimentation. What you will see on the screen is the Ned

editing "window."

8

4.4. First Exercise: Exiting from Ned

EXIT. Press the EXIT key. (It is marked DEL on some keyboards.) Ned exits,
and UNIX types % again to indicate it is ready for a UNIX command. Start Ned

up again, by typing "ned fname" and RETURN. Since the file named fname has
already been created, this time Ned will not ask for it to be made.

Every time Ned is exited, the file that was being edited is saved. The file
remains in existence indefinitely, or until it is removed.

4.5. Second Exercise: Cursor Positioning Keys

The cursor is very important in the Editor. It can be moved to any position on

the piece of file being viewed in order to type text at that position.

Positioning the Cursor. The keyboard contains eight cursor positioning keys.

These are the four keys marked with arrows pointing up, down, left, and right, and

the HOME, -TAB, +TAB, and RETURN keys. Experiment with them and observe

how they move the cursor. Caution: Try not to press the RETURN key when the

cursor is positioned on the bottom line. This causes the window to move down the

file, and may be confusing. An explanation is given in Sec. 4.7.
The lower right-hand corner of the screen displays the number of the line in the

file on which the cursor is positioned. Watch the number as you move the cursor

up and down.
Hold a positioning key down for a few seconds and notice how it repeats. Every

key on the terminal repeats if it is held down for more than a second.

4.6. Third Exercise: Typing

Typing Over Something. Characters are inserted into a file by typing them

onto the screen. Type something on the screen using the keys that contain letters,

numbers, and punctuation. The cursor positioning keys can be used to place the

cursor at any position on the screen, in order to type there.

BS. Position the cursor under some typed characters and type over them.

Characters may be deleted by typing over them with the space bar. Type something

and then use the BS (backspace) key. Note that the BS key is different from the

"move left" (left arrow) positioning key.

DELCHAR. Position the cursor in the middle of some typed words. Press the

DELCHAR key and note what happens.

INSERTMODE. Press the INSERTMODE key. Note the message on the bottom

line which indicates that Ned is now in insert mode. Position the cursor in the

middle of some typed words and type something. Notice what happens. Try the BS

key. Insert mode only affects what happens when a character or BS is typed; all

the positioning and other keys work the same as before.
To exit from insert mode, press the INSERTMODE key again. Notice that the

message at the bottom of the screen has disappeared.

9

4. 7. Fourth Exercise: Moving the Window

The file being edited can be thought of as a long scroll. The area on the screen

enclosed by the borders is called the editing window. It shows 37 lines of the file

at any time. This window can be moved up or down the file in order to edit different

parts of it. Type a few characters on each line of the screen before proceeding

further, so that the effects of moving the window are visible. For instance, you could

type "Line 1" on the first line, "Line 2" on the second line, etc.

+LINE and -LINE. Press the +LINE key. This moves the window down (i.e.,

the file up in the window) about a quarter ofthe screen. The -LINE key moves in

the other direction (but not past the first line of the file). The lower right-hand

corner of the screen shows on which line number of the file the cursor is positioned.

This helps to locate where the window is pointing once it has been moved around.

Position the window so that the first line of the file is at the top of the screen.

This can be done by pressing -LINE until the window will not move any more. Then

move the window down using +LINE until there are some blank lines at the bottom.

Type something on these lines.
+LINE and -LINE can be pressed again before Ned has finished rewriting the

screen from the first push. This can be handy if you want to move the window

repeatedly while watching to see if a particular spot has been reached. Be careful

not to hold down the +LINE or -LINE function key, as the key will repeat if held,

causing more window motion than might be intended.

RETURN on Bottom Line. Position the cursor on the bottom line of the

window and press RETURN. The window will move down just as if + Ll N E had been

pressed. This enables continuous text entry at the end of a file without the need to

keep moving the window down to bring in new blank lines.

+PAGE and -PAGE. Position the window at the first line of the file again.

Press +PAGE. Notice that this moves the window down 37lines, or one page. (The

term page has nothing to do with paper pages: it merely means one window's worth

oflines.) Press +PAGE again, moving the window down another page, and repeat

until a completely blank page appears. Notice the";" characters in the left margin.

They indicate that the window is positioned past the last typed line of the file. Press

-PAGE repeatedly to move the window back to the first line of the file. Notice the

characters in the left margin.
Experiment with +LINE, -LINE, +PAGE, and -PAGE to position the window

at various places in your file.

ARG. Press the ARG key (marked BRK on some terminals). Notice that the

cursor moves to the bottom of the screen. Type a few characters. Try the BS key.

The ARG key is used to enter arguments, which are values which modify the

various functions. Now press ARG again. Notice that whatever was typed at the

bottom of the screen has disappeared. This illustrates that pressing ARG while

typing an argument serves to wipe out the partially typed argument.

Press the ARG key, type the number 2, and press +LINE. The window moves

2lines down the file. The ARG key and numeric argument "2" served to modify the

very next function key, +LINE, by telling it how many lines to move. Try different

numeric arguments for the +LINE, -LINE, +PAGE, and -PAGE functions.

10

4.8. Fifth Exercise: Moving Lines Around

OPEN. Position the cursor on a line containing typing. Press the OPEN func

tion key. A blank line opens up. Press OPEN several times in succession. It is not

necessary to wait for Ned to finish writing the contents of the screen before the next

function key is pressed.

CLOSE. Position the cursor on a blank line and type CLOSE. This deletes the

blank line. Now position the cursor on a line of typing that is not needed, and press

CLOSE. This deletes the line.

PICK and PUT. Position the cursor on a line with typing, and press PICK.

Nothing visible happens, but a copy of that line has been picked up and stored

inside the editor. Position the cursor on another line and press PUT. A copy of the

picked-up line is inserted there. Type PUT again. Another copy of the line appears.

Multiple PUTs may be used to make any number of copies of a line.

Use CLOSE to delete a line of typing. Now position the cursor on another line

and press ARG followed by PUT. A copy of the deleted line is inserted there.

PICK and PUT operate by using two "buffers", or internal bins for temporarily

storing pieces of text. These are called the pick buffer and the close buffer. PICK

picks up a copy of a line and places it in the pick buffer. PUT puts the contents of

the pick buffer back into the file. CLOSE deletes a line, and also places it in the close

buffer. ARG PUT puts the contents of the close buffer back into the file.

Remember that the ARG key was used to specify a number of lines for +LINE

and -LINE, or a number of pages for +PAGE and -PAGE. In the same way,

pressing ARG, a number, and OPEN will open up that number of lines. Similarly,

ARG, a number, and CLOSE or PICK will close or pick that number of lines. Try

opening, closing, and picking more than one line at once by using ARG and a

number together with the function key.

4.9. Summary

With the features of Ned that have been demonstrated in this chapter, the

beginning user can create and edit files on the UNIX system. For handy reference,

these features are summarized in the first portion of the chart in App. A.

Ned is also capable of performing many editing operations not covered in this

chapter. The Index of Capabilities (App. C) provides a summary of these operations

and page references to the sections of the Reference Manual (Part II) which explain

these operations in more detail. The user should browse through App. C in order

to become acquainted with the capabilities of Ned.
Another tutorial introduction to Ned, which covers features not touched on

above, is A Guide to Ned: A New On-Line Computer Editor by Jeanne Kelly, The

Rand Corporation, R-2000-ARPA, July 1977. That report includes a model Ned

session.

PART II. NED REFERENCE MANUAL

Chapter 5

REFERENCE MANUAL: INTRODUCTION

This reference manual is intended to provide answers to specific questions

about Ned. The user will probably wish to start looking for information in one of

three places: the Summary ofNed Function Keys (App. A), the Index of Capabilities

(App. C), or the index. The Index of Capabilities lists the editing operations which

Ned can be used to perform. It is intended to make it possible for the user to answer

questions of the form, "How do I do so-and-so in Ned?"

The remaining chapters of the reference manual appear in a moderately logical

order, but are not intended to be read in any particular sequence.

13

Chapter 6

RUNNING NED: INITIAL ARGUMENTS

Ned can be initialized in several different ways, depending on the arguments

given to the "ned" UNIX command.

ned filename: Ned is initialized looking at the first page of the indicated file. If the

file does not exist, the message "Hit USE (CTRL-B) to make: filename" appears

(see USE, Sec. 11.9).

ned: Ned is initialized to the file and position that were displayed the last time the

user exited from Ned. Ifthe user has not previously run Ned on that day, Ned

will initialize looking at the system file /re.std, which contains a message

indicating that there is no default file specified. If multiple windows were in

use, only the file in the last active window is displayed.

ned -ttyfile: ttyfile must be the name of a Ned keystroke file (Sec. 13.3). Ned

duplicates the editing session from the keystroke file.

ned +filename: Ned is initialized pointing at the indicated file, and the last current

file and position from the previous Ned session are now used as the alternate

file (Sec. 11.9).

ned!: Ned is initialized precisely as it appeared at the end of the last Ned session.

All windows, files and alternates are restored.

ned !filename: Ned is initialized as for "ned!", but the named file is shown in the

last active window, and the file that was in that window becomes the alternate

file.

In any of the above examples, the file specifier "filename" can actually consist

of up to four arguments, as follows:

filename: specifies a file.

filename line: "line" is an integer specifying the line number at which the top of

the window is to be positioned.

filename line col: "line" specifies the line number, and "col" the column number,

at which the upper left-hand corner of the window is to be positioned.

filename line col srchkey: "line" and "col" specify the line and column number at

which the upper left-hand corner of the window is to be positioned. Then a

+ SCH from that point is executed to find the next occurrence of the search

key "srchkey". To specify a search from the beginning of the file, "filename

0 0 srchkey" may be used.

14

Chapter 7

MARGIN CHARACTERS

Ned uses a number of different characters to draw the borders around its
editing windows.

is used for left and right margins when no other
character applies.

is used for top and bottom margins.

appears in the left-hand margin to indicate that
the line on which it appears is past the end of the
file. Text may be typed on such a line, and the file
will be extended to that line, although Ned does
not replace the ";" on any line by" I" until that line
has to be redisplayed because it has been changed
or moved.

< appears in the left-hand margin to indicate that
the window has been moved right, and there is
text (perhaps all blanks) to the left of the left-hand
margin of the window. ";" takes precedence over
"<".

> appears in the right-hand margin to indicate that
there is text (not all blanks) on that line beyond
the right-hand margin of the window.

appears in the margins of a window which is not
active, when there is more than one window on
the screen. It does not appear in margins which
are shared with an active window.

• A bullet (bright rectangle) is displayed in each
margin to indicate the column and line containing
the cursor. (This is suppressed for terminals
running at slower than 9600 baud, since displaying
the bullets would slow down the display.)

15

Chapter 8

CURSOR POSITIONING KEYS

There are eight cursor positioning keys. Four are marked with arrows pointing
left, right, up, and down. These keys move the cursor one space in the indicated
direction. When the cursor reaches the boundary of a window, it "wraps around,"
moving to the opposite margin. Holding the keys down for a second causes them
to start repeating their function fifteen times per second.

The HOME key moves the cursor to the upper left-hand corner of the window.
The +TAB key moves the cursor to the next tab stop to the right of the current

cursor position. Tab stops are initially set at columns 9, 17, 25, 33, 41, 49, 57, 65,
and 73. Tab stops may be cleared or set in any column by use of the S/RT AB
function (Sec. 11.13).

The -TAB key moves the cursor to the next tab stop to the left of the current
cursor position, except that pressing -TAB when the cursor is in column 1 will
move the cursor to the last column of the window.

The RETURN key is usually a cursor positioning character, moving the cursor
to the first column of the line below the current one. However, if RETURN is pressed
when the cursor is on the last line of the window, a +LINE function will be per
formed before the cursor is moved. This enables continuous text entry at the end
of a file without the need to keep moving the window down to bring in new blank
lines.

Cursor positioning keys may be given positive numeric arguments: e.g., ARG

6 RETURN. The effect is to repeat the key the indicated number of times. This might
be useful for moving the cursor many lines; the tab keys are usually sufficient for
long horizontal moves.

16

Chapter 9

OTHER SPECIAL KEYS

This chapter describes four keys which fall outside the categories of normal

typewriter key, cursor positioning key, and function key. They are INSERTMODE,

BS, DELCHAR, and QUOT.

9.1. Insert Mode: INSERTMODE

INSERTMODE inverts the mode of the Editor. If the Editor is in normal mode,

INSERTMODE puts it in insert mode. If the Editor is in insert mode, INSERTMODE

returns it to normal (overtype) mode.
Insert mode affects the action of all printing characters (including space). In

normal mode, a typed character is inserted at the cursor position, replacing any

character that might have been there previously. In insert mode, a typed character

is inserted at the cursor position, and all characters that were to the right of that

position are moved over one position to the right. No characters are deleted. If

there was a character in the last column, it moves out beyond the right-hand

margin. It is no longer visible, but the margin character changes from I to > to

indicate that there is text beyond the margin.
Insert mode also affects the action of the BS key (see next section).

9.2. Backspace: BS

BS (backspace) is similar to the space bar, except that it moves the cursor left

instead of right. In normal mode, it moves the cursor left one position, and inserts

a blank in that position. In insert mode, it moves the cursor left one position,

deleting the character at that position and moving all characters to the right of the

deleted character one position to the left.
Characters deleted by this key cannot be recovered automatically, and must be

retyped to be recovered.

9.3. Deleting Characters: DELCHAR

DELCHAR deletes the character at the current cursor position, and moves all

characters to the right of the deleted character one position to the left. The cursor

does not move. Characters deleted by this key cannot be recovered automatically,

and must be retyped to be recovered.

9.4. Inserting Control Characters: QUOT

Control characters are non-printing characters, some of which perform format-

17

18

ting functions in text files. The QUOT key allows the explicit insertion of control

characters into text. This function is typed by holding the CTRL key down while

striking the "\" key. This causes ~ bullet to be inserted on the screen. The next

character typed should be another control character. It will appear as a printing

character immediately following the bullet. The bullet and printing character act

as two separate characters during the editing session, but when the file is saved

they are written into the file as a single control character.

When a file that contains control characters is edited, these characters are

displayed as a bullet followed by a printing character, and are written out again

as the single control character.
The main use of this feature is to insert formatting control characters in a file.

In particular, the character control-L (typed by QUOT L) will cause a form eject at

that point when the file is printed on a line printer or other output device. Other

formatting characters that can be used with some printers and terminals are con

trol-H (backspace) and control-K (vertical tab).

Chapter 10

COMMAND LANGUAGE

Users who are familiar with other editors know that every editor is told which

functions to perform by means of commands.
To tell one editor to delete a line, the user might type "DELETE". In the

command language of another editor, the delete command might be given by

simply typing "d".
Ned has an abbreviated command language, consisting of the cursor position,

cursor motions, arguments and function keys. The terminal screen displays a cur

sor, which is an underscore indicating the position where the next character that

is typed will appear. Eight cursor motion keys allow the user to move the cursor

about the screen. Many editing functions are performed at the spot, or on the line,

indicated by the cursor. Thus the first element of the command language is the

cursor position.
Commands are performed by function keys. For example, to delete a line in

Ned, instead of typing "DELETE" or "d", the user positions the cursor anywhere

on the line to be deleted and presses the function key marked CLOSE.

10.1. Arguments to Commands: ARG

Many commands are made more flexible by use of arguments. For example, to

delete (close up) five lines, the CLOSE function key is used, with an argument of

5. This is done by pressing the ARG key (which moves the cursor down to the bottom

of the screen so the argument is not typed onto the file), typing the argument "5",

and then pressing CLOSE. This can be written as ARG 5 CLOSE.

In general, a function is invoked with an argument by typing the ARG key, the

argument, and the function key. While the argument is being entered, the cursor

is positioned on the last line of the screen. A bullet temporarily holds the place on

the screen that corresponds to the cursor position.
Some functions can take only arguments which are numeric. Others may take

as argument any string not containing a positioning key (see Chap. 8). The table

in App. A indicates the type of argument required by each function and the way

in which the argument is interpreted. If an improper argument is given, the Editor

will sound the bell (on terminals so equipped) and give an error message at the

bottom of the screen.
While typing an argument, the BS key may be used to correct errors in typing.

When all characters in an argument have been erased by BS, any further BS keys

are ignored.
If a positioning key is typed in an argument, three different interpretations are

possible. If only numeric characters have been typed in the argument, they are

taken as the argument to the positioning key (Chap. 8). If non-numeric characters

have been typed, an error message will be given. If a positioning key is the first key

in an argument, the argument is taken to be a cursor-defined argument (see next

19

20

section). Thus, only BS, and not positioning keys, may be used to edit a partially

typed argument.
To erase a partially typed argument without performing any function, type the

ARG key again.

10.2. Cursor-Defined Arguments

Cursor motions can also be used as arguments, to indicate directly on the screen

which lines, characters, or rectangular areas are to be manipulated. This amounts

to indicating a set oflines or a rectangular area on the screen by saying "From here

... to here," where each "here" is indicated by a positioning of the cursor.

Indicating Lines by Cursor-Defined Arguments. A cursor-defined argu

ment can be used to designate a group oflines to be operated on by OPEN, CLOSE,

or PICK.
For example, deleting (closing) several lines by cursor positioning takes the

following four steps: (1) Position the cursor somewhere on the first line to be

deleted. This is the "From here." (2) Press ARG. (3) Position the cursor at the spot

directly below on the last line to be deleted. Do this by pressing repeatedly on the

key with the arrow pointing down on it. This defines the "to here." (4) Press CLOSE.

This will delete the lines "From here ... to here."
Opening or picking several lines may be done in exactly the same way, using

the OPEN or PICK function key.
The lines defined by vertical cursor motion are the lines from the initial to the

final position, inclusive.

Indicating Areas by Cursor-Defined Arguments. A cursor-defined argu

ment can be used to designate a rectangular area of text to be operated on by OPEN,

CLOSE, or PICK.
In the example in the previous section, if the "to here" is not in the same column

as the "from here," the argument defined by the cursor motions is not a series of

lines, but rather a rectangular area on the screen. Such an area can be closed or

picked. If it is opened or put, the line(s) in which the text is inserted are opened

up horizontally to make room for the new material, and the remainder of each line

is moved over to the right.
The area defined by vertical and horizontal cursor motions consists of the lines

from the initial to the final position, including both the initial and final line, and the

columns from and including the leftmost position, up to but not including the

rightmost position.
It is not necessary for the "from here" to be above the "to here," or to its left.

The only requirement is that a sequence of lines be defined by indicating the first

and last lines in either order, or that a rectangle be defined by indicating two

opposite corners in any order.
The only functions which take cursor-defined arguments to specify groups of

characters, lines, or rectangular areas of text, are CLOSE, OPEN, and PICK.

Chapter 11

THE FUNCTION KEYS

This chapter explains in detail the effect of each function key in Ned, with the

exception of the EXEC key, which is treated in Chap. 12. The effect of each function
is summarized in the chart of App. A.

11.1. Vertical Window Motion: PAGE, LINE, and RETURN

In Ned the term page refers to the amount of text that fits in a window, usually
37 lines.

Pressing the function key marked +PAGE moves the window down the file a

number oflines equal to one page. ARG n +PAGE, where n is a numeric argument,

moves the window down the file n pages, i.e., n times the number of lines in the

window. The cursor is positioned about one-fourth of the way down from the top

of the window, in the leftmost column. If a zero argument is given, neither the

window nor the cursor are moved, and if a negative argument is given the window

is moved up the file the indicated number of lines, as for -PAGE.
-PAGE moves the window up the file a number oflines equal to one page. ARG

n -PAGE, where n is a numeric argument, moves the window up the file n pages.

The cursor is positioned about one-fourth of the way down from the top of the

window. An attempt to move the window above the first line of the file will move

it to the first line of the file. If a zero argument is given, neither the window nor

the cursor are moved, and if a negative argument is given, the window is moved

down the file the indicated number of lines, as for +PAGE.
+LINE moves the window down the file a number of lines equal to one-fourth

of the number of the lines in the window, rounded up to the next integer. ARG

+LINE moves the window so that the line containing the cursor is on the top line

ofthe window. ARG n +LINE, where n is a numeric argument, moves the window

down the file n lines. If the line containing the cursor is still contained in the window

after the move, the cursor moves with the line, remaining in the same position

relative to the text. If the line containing the cursor is no longer in the window, the

cursor is positioned about one-fourth of the way down from the top of the window,

in the leftmost column.
-LINE moves the window up the file a number of lines equal to one-fourth of

the number ofthe lines in the window, rounded up to the next integer. ARG -LINE

moves the window so that the line containing the cursor is on the bottom line of

the window. ARG n -LINE, where n is a numeric argument, moves the window up

the file n lines. An attempt to move the window above the first line of the file will
move the window to the first line of the file. If the line containing the cursor is still

contained in the window after the move, the cursor moves with the line, remaining
in the same position relative to the text. If the line containing the cursor is no longer

in the window, the cursor is positioned about one-fourth of the way down from the

top of the window, in the leftmost column.

21

22

ARG +PAGE and ARG -PAGE, and cursor-defined arguments with any ofthe

PAGE and LINE keys, will produce an error message.
If +PAGE, -PAGE, +LINE, and -LINE are used to move the window farther

than 32,767lines (about 885 pages) or past line 32,767 in the file, the editor will fail.

RETURN, when typed on the last line of a window, has the same effect as the

sequence +LINE RETURN. This makes it possible to enter many lines of text at high

speed without explicitly repositioning the window. When the cursor is on any line

but the last, RETURN is only a cursor positioning key.

11.2. Opening Lines and Areas: OPEN

Pressing the function key marked OPEN inserts a blank line at the current .

cursor line, and moves all subsequent lines down.
ARG n OPEN, where n is a positive integer, inserts n blank lines at the current

cursor line, and moves all subsequent lines down.
ARG OPEN splits the current line by moving the characters at and to the right

of the cursor position onto a new next line, and moves all subsequent lines down

one line. This action may be reversed by typing ARG CLOSE before repositioning

the cursor.
ARG motion OPEN, where the argument is cursor defined, is used to open either

a number of lines, or a rectangular area, as indicated by the cursor-defined argu

ment (see Sec. 10.2). If lines are indicated, ARG motion OPEN opens that number

oflines. If an area is indicated, blank spaces are inserted in the columns ofthat area

in each line, and the remainder of the line is moved to the right to make room for

the blanks. No characters are deleted, but characters may be pushed out of the

window to the right. If this occurs, the right margin character changes from "I" to

">" to indicate that there is text beyond the right margin.
In all variations of the OPEN function, the cursor remains at the position it

occupied before the function was initiated. When the ARG key is used, the cursor

returns to its position before the ARG was typed.

11.3. Deleting Lines and Areas: CLOSE

The function key marked CLOSE deletes the line on which the cursor is posi

tioned and places the contents of the line in the close buffer. The previous contents

of the close buffer are lost. (See PICK, Sec. 11.4, for a discussion of buffers.)

ARG CLOSE deletes the part of the current line beginning with the cursor

position and extending to the end of the line. The deleted portion is replaced by the

contents of the next line; i.e., the remaining portion of the current line is merged

with the next line. All lines below are moved up one line to fill the gap caused by

merging the two lines. The deleted line fragment is not saved in the close buffer;

the contents of the close buffer are not altered.
ARG n CLOSE, where n is a positive numeric argument, causes the n lines

beginning with the current cursor line to be deleted. The deleted lines are placed

in the close buffer, and the previous contents of the close buffer are lost. If the

specified number oflines extends beyond the end of the file, a sufficient number of

blank lines are supplied in order to provide a total of n lines to the close buffer.

23

ARG motion CLOSE, where the argument is cursor defined (see Sec. 10.2),

causes the text in the indicated lines or area to be deleted. If lines are indicated,

the effect is as if ARG n CLOSE had been typed, with n equal to the number oflines

indicated. Areas are deleted by removing the indicated portion of each line, and

moving left the characters to the right of the deleted portion to the left to fill the

gap. The deleted lines or area are placed in the close buffer, and the previous

contents of the close buffer are lost.
In all variations of the CLOSE function, the cursor remains at the position it

occupied before the function was initiated. When the ARG key is used, the cursor

returns to its position before the ARG was typed.
The text deleted by most CLOSE commands can be replaced in its original

position by typing the sequence ARG PUT as the first thing typed after the CLOSE

key (see PUT, Sec. 11.5). However, this will not work for ARG CLOSE which, as

noted above, does not save the deleted text in the CLOSE buffer. Further, ARG PUT

will not restore the former contents of the close buffer. However, anything placed

into the close buffer is also placed in the # file (see Sec. 13.2), and thus can be

recovered at any time during the editing session.

11.4. Replicating Lines or Areas: PICK

PICK is used with PUT to pick up a copy of the text in a group of lines or a

rectangular area, without disturbing the text, and then to put one or more copies

of the text down at any point in any file being edited. PICK picks up a copy of the

text and places it in an internal storage bin called the pick buffer. PUT copies the

contents of the pick buffer back into a window. (CLOSE operates similarly to PICK,

but places its text into a different buffer, the close buffer, and deletes the text from

the file at the same time.)
A buffer may contain lines of text, or an area of text. Ifthe contents of the buffer

were placed there by a cursor-defined argument which indicated a rectangular area

of text, then the buffer contains a rectangle of text. Otherwise, it contains lines.

Pressing PICK places a copy of the current cursor line into the pick buffer.

ARG n PICK, where n is a positive integer, places then lines beginning with the

current cursor line into the pick buffer. If the specified number of lines extends

beyond the end of the file, a sufficient number ofblank lines are supplied in order

to provide a total of n lines to the pick buffer.
ARG motion PICK, where the argument is cursor defined, causes the indicated

text to be copied into the pick buffer. If lines are indicated, the effect is the same

as for ARG n PICK. Indicated areas are placed in the pick buffer as partial lines, and

will be inserted by PUT within lines, pushing to the right any text to the right of

the insertion (see next section).
Anything placed into the pick buffer is also placed in the # file (see Sec. 13.2).

PICK functions do not alter the screen or the files being edited.

11.5. Placing Copies of Text in the File: PUT

Pressing the function key marked PUT places the contents of the pick buffer at

24

the current cursor position. ARG PUT places the contents of the close buffer at the

current cursor position. The contents of the buffer are not affected.

A buffer may contain lines of text, or an area of text. If the contents of the buffer

were placed there by a cursor-defined argument which indicated a rectangular area

oftext, then the buffer contains a rectangle of text. Otherwise, it contains lines. (The

contents of the buffer were placed there by either the PICK or the CLOSE function,

Sees. 11.3 and 11.4.) The contents are inserted into the file in different ways, depend

ing on whether they are lines or an area of text.
If the buffer contains lines of text, those lines are inserted starting at the

current line, and subsequent lines are moved down to make room for the inserted

lines.
If the buffer contains a rectangle of text, the rectangle is inserted with the upper

left-hand corner of the rectangle at the current cursor position. The portions of the

affected lines to the right of and including the current cursor column are moved to

the right to make room for the inserted text. This may cause text to be moved

beyond the right margin of the window. In this case, the text will no longer be

visible, but the right margin character on lines containing such text will be changed

from" I" to ">" to indicate that there is text beyond the right margin.

Two uses for PICK and PUT of rectangles of text are: (1) repeatedly inserting

one or several words within lines as a rectangle of text one line high, and (2)

repeatedly opening areas of text by putting in an area of blanks. The latter could

also be accomplished by OPEN with a cursor-defined argument, but this takes many

more keystrokes and the argument must be redefined for each area to be opened.

PUT may be used, in conjunction with PICK or CLOSE, to move text from one

file to another, since the contents of the pick and close buffers remain unchanged

when windows or current files are switched (see CHWIN, Sec. 11.12, and USE, Sec.

11.9).

11.6. Leaving the Editor: EXIT

EXIT causes termination of the editing session. All files which have been altered

during the session are saved. The previous version of the file is renamed by append

ing the characters ".bak" to the old file name, and then truncating the name to 14

characters. If the old file name was 14 or more characters long, no ".bak" file is

created. If an old ".bak" file existed, it is lost.
Files which have not been altered are not written out. However, files are

considered changed if any printing characters were typed while editing the file,

even if they did not result in an alteration of the file's contents. Since space is a

printing character, using space instead of the move right cursor positioning key

may result in a file being saved when the intent was merely to examine it.

ARG EXIT exits the editor as above, and then executes the most recent UNIX

load, compil, or ex command. This is useful for programmers who wish to repeated-·

ly edit and compile a program being debugged.
ARG a EXIT aborts the current editing session. No files are changed (unless

explicitly saved earlier in the session by SAVE), and no ".bak" files are lost. The

editing performed in the session may be recovered by manipulation of the key

stroke file if desired (see Sec. 13.3).

25

ARG a dEXIT aborts the current editing session and provides a dump of the

internal structures of the Editor. It is useful to system programmers debugging or

changing the Editor.
ARG stg EXIT, where stg is anything but "a" or "ad", including a cursor-defined

argument, has the same effect as ARG EXIT.

There is no way to abort or terminate the editing session other than by using

the EXIT key when the Editor is ready to accept a command, short of killing the

editor program from another terminal. Consult an experienced user should this

become necessary.

11.7. Searching for a Text: +SCH and -SCH

ARG string + SCH, where string is any sequence of printing characters,

searches forward in the file being edited for the next occurrence of the string. The

search begins at the character position following the current cursor position. If the

search string is found, the cursor is moved to the first character in that occurrence

of the string. If that position was in the window before the search began, the cursor

is simply moved there. If the position was not in the window, the window is moved

down the screen to bring the line containing the string to a position about one

fourth of the way down from the top of the window.

When the cursor is moved to the located string, a bullet is flashed at that

position for one second to make its location more apparent.

If the string does not occur between the current cursor position and the end of

the file, the message "Search key not found" is displayed, and the window and

cursor positions are unchanged.
+ SCH, with no argument, will use the previous search string. Thus, to search

to the second occurrence of a string one might type ARG string +SCH +SCH. If

no prior search has been made during the editing session, an error message is

displayed.
ARG + SCH will use the text in the window beginning at the current cursor

position, and ending at the first blank, as its search string.

-SCH behaves similarly to +SCH, but -SCH searches backward in the file

being edited, starting at the position preceding the current cursor position.

A search operation cannot be interrupted once it has been initiated. This can

be annoying when searching in a long file.

When a search operation locates the search string in a long line of text, in a

column past the right-hand boundary of the editing window, the window is moved

right (see Sec. 11.14) in order to display the located string. This can be confusing,

since most of the text will disappear from the screen. The left-hand border of the

window will be displayed using the character"<" to indicate that there is text to

the left of the border. This situation will not occur often, since normal editor use

will not encounter lines longer than the width of the window.

11.8. Moving to a Specified Line: GOTO

ARG n GOTO, where n is a positive integer, moves the window so that line

number n of the current file is on the top line of the window. The cursor is positioned

26

about one-fourth ofthe way down from the top of the window; the cursor will not

be positioned on line n of the file.
GOTO without an argument is equivalent to ARG 1 GOTO. It moves the window

to the beginning of the file. ARG GOTO moves the window to the end of the file.

The last line ofthe file is displayed about one-fourth of the way down the window.

11.9. Editing and Creating Files: USE

ARG filename USE (USE is CTRL-B) causes the file named "filename" to become

the current file being edited in the window. The previous file, window position, and

cursor position are saved as the alternate file state for the window. Any previous

alternate file state is lost.

If no file exists with the specified name, the Editor will display the message "Hit

USE (CTRL-B) to make: filename." Pressing USE at this point will create a new file

with that name, and use it as the current file; the previous file becomes the alternate

file for the window. Pressing anything else instead of USE will return the editor to

the previous state. No new file is created and the window and alternate file status

are not altered.
USE, with no argument, causes the current and alternate file states to be

switched. The window displays the alternate file. The window position in the file

and the cursor position are restored to where they were when the alternate file

state was recorded. The current file, window position, and cursor position are saved

as the new alternate file state.
The alternate file state may be used to alternately edit two files. However, if

the current file name is used again as the argument to ARG filename USE, then that

file becomes both the current and the alternate file. In this case, USE is employed

to switch back and forth between two different positions in the file without losing

either of the window or cursor positions. This can be useful when two portions of

the same file are being changed, for moving lines from one part of a file to another,

etc. If lines are added or deleted in the current window at a point above the

alternate window position, the alternate window position will be adjusted to point

to the same text lines as before, even though those lines may now have a different

line number in the file.
Pieces of text can be picked from one file and put into another by using the PICK,

PUT, and USE functions in combination.
Normally, the Editor can be exited and restarted without losing the currently

active file, window position, and cursor position. The command "ned!" may be used

to restart Ned in a way that preserves all windows and all current and alternate

file states (see Chap. 6).

11.10. Saving Files without Exiting: SAVE

Normally, a file is not changed on disk until the end of the editing session.

Before that, the changes are recorded on the Editor's internal image of the file.

Sometimes it may be desired to write the altered file on disk and continue with the

editing session.

27

Pressing the function key marked SAVE (SAVE is CTRL-V) causes the file being

edited to be written out on disk. The editing session may then be continued. The

state of the editor is not changed. The previous version of the file is renamed to a

new name generated by appending the characters ".bak" to the old file name, and

then truncating the name to 14 characters. If the old file name was 14 or more

characters long, no ".bak" file is created and the previous version of the file is lost.

If an old ".bak" file existed, it is lost.
The file will be saved again upon exiting if it was altered at any time during

the editing session, even if it was not altered again after the SAVE (see Sec. 11.6).

ARG filename SAVE will save the current image of the file being edited on a new

file named "filename". If a file by that name already exists, it is renamed to a new

name generated by appending the characters ".bak" to the old file name, and then

truncating the name to 14 characters. If the old file name was 14 or more characters

long, no ".bak" file is created and the previous version of the file is lost. If an old

".bak" file existed, it is lost.
ARG SAVE is similar to ARG filename SAVE, but takes its file name from the

text in the window, starting at the current cursor position, and ending with the first

blank.
If ARG filename SAVE is used to write on an alternate file or a file being

displayed in another window, that file's image on disk will be altered, but the Editor

will continue to display the original version of the file until the end of the session.

If that file is subsequently saved by SAVE or by exiting, a new disk image of the

file will be created, reflecting what the Editor thought the file was originally, or

what it was changed to by editing. The ".bak" file may reflect the result of the ARG

filename SAVE.
Saving a file being edited may provide some security in the event of a system

malfunction, since it saves the results of all editing on that file up to the time of the

save. However, it will invalidate the keystroke file, which can then no longer be

relied upon for recovery (see Sec. 13.3).

11.11. Creating More than One Window: WIN

The screen initially consists of one large editing window. If it is desired to edit

more than one file, or display different parts of a file simultaneously, the screen may

be divided into up to ten smaller windows, each of which has its own current and

alternate file, window position, and cursor position.
At any time, one window, called the current window or active window, contains

the cursor and can be used to edit the current file being displayed in that window.

The cursor cannot be positioned outside the current window by the cursor position

ing keys, but the CHWIN function (Sec. 11.12) may be used to activate another

window as the current window. The boundaries of the current window will be

drawn using the standard margin characters. The boundaries of all inactive win

dows are drawn using the character ".".
A new window is created by dividing an existing window into two smaller ones.

This is done by positioning the cursor next to one of the boundaries of the window

to be divided, and pressing WIN (CTRL-Z). The window is divided by a new margin

or boundary line extending through the cursor position, perpendicular to the adja

cent boundary. The new window is the one below the new boundary, in the case of

28

a horizontal division, or the one to the right, if the division is vertical. The new

window becomes the current one, and starts off with the system default file, /re.std,

as the current file. Another file may be edited in the new window by the USE

function (Sec. 11.9). The remainder of the old window continues to display its

current file, and may be reactivated by the CHWIN function (Sec. 11.12).

A window can be created with a file initially displayed by typing ARG filename

WIN.
If an attempt is made to create a new window when the cursor is not positioned

next to an old window boundary, or when the cursor is in a window corner, the

Editor will not know where the new boundary is to be placed, and will display the

error message "Can't put a window there."
An interesting condition arises when the same or different portions of one file

are being displayed in two or more windows. If a line is displayed in more than one

window, any change made in that line is reflected in each of these windows. The

inactive windows are updated each time the cursor is moved to a new line. More

over, iflines are added or deleted in the current window at a point in the file before

the portion displayed in another window editing the same file, the position of the

other window will be adjusted to point to the same text lines as before, even though

those lines may now have a different line number in the file.
Windows may be deleted, but only in the reverse order of their creation. To

delete the most recently created window, and return its area to the window from

which it was divided, type ARG WIN. It occasionally happens that, after a window

is deleted, a boundary of that window will remain drawn in periods rather than the

standard margin characters. This is a "cosmetic" malfunction, and does not affect

the operation of the editor.
If an editing session in which there are multiple windows is terminated, the

state of the Editor, including all windows, files, window and cursor positions, and

alternate file states, may be restored by the UNIX command "ned!" (see Chap. 6).

11.12. Changing Windows: CHWIN

CHWIN (CTRL-C) is used when the screen contains more than one editing

window. It activates the next window (in order of creation) to be the current editing

window. The activated window has its margin drawn in the standard margin char

acters to indicate that it is active, and the cursor is restored to its previous position

in that window. The alternate file status for that window is the same as it was when

that window was last active.
CHWIN may take a positive numeric argument. In this case, the window with

that number is activated. The windows are numbered in order of creation, starting

with 1.
See also WIN (Sec. 11.11).

11.13. Setting and Clearing Tab Stops: 5/RTAB

Up to a maximum of20 tab stops may be set and cleared by the user. Tab stops

are initially set at every eighth column in the file, beginning with column 9.

29

Pressing the function key marked S/RTAB (CTRL-[) causes a tab stop to be set
at the column in which the cursor is positioned. ARG S/RTAB causes the tab stop
in the cursor column, if any, to be cleared. Any string or cursor-defined argument
to S/RTAB is ignored, and the tab stop in the cursor column is cleared.

Tab stops are set relative to the columns of a file, not the left margin of the
window. Thus, if a file is moved left in a window (Sec. 11.14), the tab stops still
correspond to the same positions in the text.

The same set of tab stops is used for all windows on the screen.

11.14. Editing Wide Lines: LEFT and RIGHT

In order to edit files which contain lines longer than the width of the window,
the window may be moved left and right on the file, just as it is moved up and down.
The RIGHT (CTRL-S) key moves the window 16 columns to the right. The left
margin characters are replaced by the character"<" to indicate that there is text
beyond the margin. The LEFT (CTRL-A) key moves the window 16 columns to the
left, or to the left margin of the file, whichever is closer. If the window is reposi
tioned at the left margin of the file, the margin characters are replaced by "I".

The cursor remains on the line it occupied prior to the move. If its original
column is still on the screen, the cursor remains there. If the column has been
moved off the screen, the cursor is moved to the column next to the margin nearest
the original column.

The window may be moved a specified number of columns in either direction
by ARG n LEFT and ARG n RIGHT, where n is a numeric argument.

Chapter 12.

INTERACTIVE TEXT PROCESSING

Several text processing operations, such as substring replacement, paragraph

fill and justification, indenting, and multiple spacing, are performed by programs

which are run from within Ned by means of the EXEC (CTRL-X) key. The requested

operation is performed on the indicated paragraphs or lines and the results dis

played in the editing window. The mechanism by which this is implemented allows

other operations to be added without further editor modification, both on a system

wide and on an individual user basis.
Section 12.1 gives a brief introduction to the EXEC function, to allow use of

many of the capabilities without further explanation. Section 12.2 explains in more

detail the arguments and effect of the EXEC key. Sections 12.3 through 12.6 de

scribe more fully the most useful text processing functions available through EXEC.

Section 12.7 gives details of the implementation of this mechanism for those wish

ing to provide new text processing modules for use with EXEC, and Sec. 12.8

provides examples of the way in which a wide range oftext processing programs,
or filters, available in the UNIX operating system may be useful in editing using

EXEC.

12.1. Fill, Justify, and Replace: A Quick Introduction

The fill, justify, and replace features are all invoked by the EXEC key. For

example, to fill (i.e., align the line lengths so that they are approximately the same)

and justify the right margin of the paragraph of text starting at the line on which

the cursor is currently positioned, type

ARG just EXEC

"Paragraph oftext" means a sequence oflines separated by one or more blank lines.

To fill (but not justify right margins) the next 6 paragraphs, type

ARG 6 fill EXEC

To replace all occurrences ofthe word "Raquel" with the string "Ms. Welch" in the

next 15 lines, type

ARG 151 rpl Raquel "Ms. Welch" EXEC

(The quotes are necessary since the string "Ms. Welch" contains a space.)
This is probably all you need to know in order to make use of these operations.

The following sections give more detail concerning these and other operations that

can be performed using the EXEC key.

30

31

12.2. Arguments and Effect of EXEC

The EXEC function is unique in that it takes more than one argument. As in
UNIX commands, the arguments are separated by one or more spaces. The argu
ments are:

1. An optional first argument, telling the number oflines (negative integer)
or paragraphs (positive integer) to be operated on. If this argument is
omitted, it is assumed to be 1 (one paragraph). Paragraphs are groups of
non-blank lines separated by one or more blank lines. The first line to be
operated on is always the line currently containing the cursor. Iflines past
the end ofthe file are specified, only lines up to the end of the file are used.
Thus a large argument, such as 999, may be used to specify the entire file,
starting with the current line. A number of lines may alternatively be
specified by an argument consisting of a negative integer, or equivalently,
an integer followed by the letter "l". For example, -15 and 151 both
specify a block of 15 lines.

2. The name of the operation (filter) to be performed.
3. Arguments to the operation. These vary with the individual operation. If

an argument contains one or more spaces, it is necessary to enclose it in
paired single or double quotes (' ' or " ").

The effect of the EXEC function key is to feed the lines to be operated on to the
function program specified, and then replace them by the same lines as processed
by that program. The old lines are placed in the close buffer and the previous
contents of the close buffer are lost.

12.3. The Replace Function: Rpl

The program rpl requires two arguments. It replaces all occurrences of the
character string which is its first argument by the string which is its second argu
ment. Quotes must be used to enclose an argument containing spaces.

Rpl recognizes regular expressions in its first argument. For the definition of

regular expression, see ed(I) in the UNIX Reference Manual (except that rpl uses
"@ "instead of"." to match any character). Thus, to delete all sequences ofblanks
at the beginning of the next 100 lines, type

ARG 1001 rpl "A *" " " EXEC

(Note that this will not delete tabs at the beginning of lines.) This means that the
characters A , $, @, *• [,and] must be preceded by" \ "to be recognized in the first
argument of rpl.

To delete a string using rpl, replace it by the null string " ".

12.4. Justifying Text Paragraphs: Just

The program just passes its text lines to nroff to be filled and justified. (Nroff
is a text formatting program in the UNIX operating system; see "NROFF Users'
Manual" by Joseph Ossanna, in Documents for Use with the UNIX Time-Sharing

32

System, Sixth Edition, Bell Telephone Laboratories.) Options for just are identical

with those for nroff, except that hyphenation is normally turned off, all escape
characters are set to the tilde character (so as not to alter input text unexpectedly),

and paging is disabled.
To deal correctly with indented paragraphs, just always indents the first and

second lines of a paragraph exactly as they are indented in the source text, and lines

up all subsequent lines with the second line. The special treatment of indented

paragraphs may be suppressed; see below. All multiple spaces and tabs within a
line are treated by just as single spaces. The effect is to allow the user to correct

already-justified paragraphs, and then rejustify the text. However, this means that

multiple spaces will be lost in text passed through just.
It is also possible to enter a paragraph of raw text, in free format, starting the

first two lines at the proper indentations, and then use just to justify the entire

paragraph.
One or more arguments may be given to just If the argument begins with a".",

it is taken to be an nroffcommand line and passed directly to roff. (Ifthe argument

does not begin with".", it is given to nroffas an argument.) Arguments which alter

nroff escape characters will have no effect, however.

Example: to justify the next three paragraphs with hyphenation:

ARG 3 just ".hy 1" EXEC

Example: to justify the next 20 lines between columns 10 and 70, pass to nroffthe
.in (indent) and .ll (length) commands, as follows:

ARG 201 just ".in 10" ".ll 70" EXEC

If one of the arguments to just is the single character "x", just will not attempt to

process indented paragraphs correctly or remove multiple spaces before passing

the text to nroff. Nroffwill receive the text exactly as it appears in the source file.

12.5. Filling Text Paragraph: Fill

Fill works identically to just (Sec. 12.4) except that right margins are not

justified. The effect of fill is to make all lines approximately the same length.

12.6. Multiple Spacing and Indentation: Space

The program space manipulates paragraphs of text by double spacing, multiple

spacing, and/or indenting the lines. It takes either zero, one, or two arguments.

With no arguments it will double-space text. The argument -n, where n is an
integer, will cause the text to be n-spaced; i.e., n -1 blank lines will be inserted

between every two lines of text. The argument -in, where n is an integer, will

cause each line to be indented n spaces. Thus, to double-space a paragraph, type

ARG space EXEC

33

To single space two paragraphs and indent them ten spaces, type

ARG 2 space -1 -ilO EXEC

12.7. How EXEC Works

This explanation of the EXEC mechanism is presented for readers who have a
detailed knowledge of the UNIX operating system.

The EXEC key causes the Editor to spawn a fork with a pipe as standard input
and the editor temporary file, positioned at the current end of file, as standard
output. The fork then runs the named program as a filter, and dies. The Editor
examines the termination status of the fork. A status of -1 is reserved for "File
not found" when trying to execute. A status of -2 causes a "Program terminated
abnormally" diagnostic. Ifthe status is anything else, whatever was written on the
standard output by the filter is inserted in place of the input lines. The removed
lines, if any, are placed in the close buffer, and may be retrieved by ARG PUT.

The named filter is searched for in the same manner as the shell would: working
directory, user's /bin, /bin, /usr/bin. Thus users may write their own editor filters,
and may override system filters of the same name.

12.8. More General EXEC Capabilities

The UNIX operating system contains a wide variety of text processing pro
grams suitable for use with EXEC. For information on specific programs, see the
UNIX Programmer's Manual by K. Thompson and D. Ritchie. Any program suit
able for use as a filter may be used with EXEC. Thus, to pick five lines onto file
"file 1," type

ARG 51 tee file1 EXEC

This replaces the five lines with their output from tee-i.e., the five lines are not
changed-but tee writes them on file1 as well.

To insert file "file2", type

ARG 0 cat file2 EXEC

This inserts (replaces 0 paragraphs) file file2 (the output of"cat file2") at the current
line.

To sort the lines in a paragraph in alphabetical order, type

ARG sort EXEC

To insert the current date and time at the current line, type

ARG 0 date EXEC

To replace a line consisting of an arithmetic expression (e.g., 32.7 * sin(2.68))
by its value, type

ARG bas EXEC

(thus invoking the BASIC language processor to compute the expression).
The uses of the EXEC key are limited only by the ingenuity of the user.

Chapter 13

RECOVERY

The Editor contains several backup features to prevent destruction of informa

tion by system failures or by inadvertent user actions.

13.1. Old Versions of Files: ~~.bak" Files

When an altered file is saved, either by exiting at the end of an editing session,

or by the SAVE function (Sec. 11.10), the previous version of the file is not deleted,

but is renamed to a new name generated by appending the characters ".bak" to the

old file name, and then truncating the name to 14 characters. If the old file name

was 14 or more characters long, no ".bak" file is created, and the old version of the

file is lost. If an old ".bak" file existed, it is lost.
Administrative procedures at an individual computer installation may result in

the periodic deletion of ".bak" files in order to save disk space. At the time of this

writing, the procedure on the Rand-UNIX system is to delete ".bak" files every

night. Note, however, that files whose names are 11 to 13 characters in length will

have backup files ending in ".ba", ".b", or".", since the backup file name is truncat

ed to 14 characters. These files may remain in existence indefinitely.

13.2. Recovering Deleted Text: The # File

When text is deleted using the CLOSE function, the most recently deleted

material is saved in the close buffer (Sec. 11.4). Previously deleted material is no

longer available from the close buffer. However, the material may be recovered at

any time prior to the end of the editing session through a mechanism known as the

"# file".
The # file behaves just like a file with the name "# ", except that it is complete

ly internal to the Editor. It is never written out on disk, and disappears at the end

of each editing session. Each time material is inserted into either the pick buffer

or the close buffer, the same material is inserted at the end of the # file. This

process can be viewed directly by creating a new window containing the # file (the

command is ARG # WIN; see Sec. 11.11), and then picking or deleting text using

PICK or CLOSE. The text will appear simultaneously in the # file.
If it is desired to recover any material that has been deleted during the current

editing session, the # file may be edited using the USE (Sec. 11.9) or WIN (Sec. 11.11)

commands with the file name"#". The text to be recovered may be located in the

file and moved to the file being edited using PICK and PUT (Sees. 11.4 and 11.5).

34

35

13.3. Recovering from Crashes: The Keystroke File

Every keystroke typed during an editing session is saved on a special keystroke

file to enable the session to be reproduced. This is desirable for two reasons. First,

if the system malfunctions before the Editor is exited and the updated files saved,

reproducing the session up to the point of the system failure would avoid losing the

work done up to that point. Second, if a particular sequence of user actions produces

an editor malfunction, the ability to reproduce that precise sequence of actions will

enable system software personnel to identify and repair the problem.

The name of the keystroke file is /tmp/rettyX.fred, where ttyX is the name of

the terminal in use, and fred is the user's login name. (The name and terminal of

all users is displayed by the UNIX "who" command.) This file is reused every time

Ned is run. Therefore, if the keystroke file is to be used, it must be saved under

another file name before using the Editor again from the same terminal. To save

the keystroke file, execute the UNIX command "mv /tmp/rettyX.fred newname",

where "newname" is a previously unused file name in your directory, and the

terminal and login name actually in use are substituted for ttyX and fred.

To reproduce the editing session exactly as it occurred, the keystroke file should

be saved as described above. Also, the files edited in that session should be restored

to their state before the start of that session. For example, if file "fname" was

edited, and the session terminated normally, the old fname is now fname.bak, and

a new fname has been made. If it is desired to reproduce the session, fname.bak

must be restored to fname by the UNIX command "mv fname.bak fname". Iffname

has not been changed, there is no need to put it back. If, however, fname were saved

during the session by the SAVE function, and then again at the end of the session

by exiting normally, the original file fname has by now been first renamed to

fname.bak, and then lost entirely at the second save. Thus the session could not be

reproduced.
If an editing session is initiated by the command "ned", with no arguments, and

terminates normally, it generally cannot be reproduced, since the initial editor

state will be lost. However, if such an editing session is terminated abnormally,

such as by an editor or system crash, the session can be recovered as long as the

recovery is the first use of the Editor by the user after the crash.

Once the keystroke file has been saved and the files that were changed have

been restored to their previous state, the editing session may be reproduced by the

UNIX command "ned-ttyfile", where ttyfile is the name of the saved keystroke file.

The Editor will perform all the actions of the previous session. This is worth doing

once just to watch.
If the session was terminated by a system crash, the Editor will come to the end

of the keystroke file and pause in its current state. At this point, you may proceed

with the editing session by using the keyboard.
If the session was terminated by an editor crash, the crash will be reproduced,

together with a dump of the internal data structures of the editor. If the session

was terminated normally, the reproduction of that session will also terminate

normally.
Often it is not desirable to reproduce the entire session. If the last keystroke

caused the Editor to crash, it is more useful to reproduce the session up to the next

to last keystroke, and then try to save the edited files at that point.

The Editor may display an error message giving the cause of a crash. If the

36

cause was running out of space, it may be necessary to delete a number of key

strokes from the end of the keystroke file before the edited files can be saved

without crashing the Editor.

The keystroke file contains many control characters, corresponding to the func

tion keys typed during the editing session. As explained in Sec. 9.4, control charac

ters in a text file are displayed by the Editor as a bullet followed by a printing

character. To delete a control character, it is necessary to delete both the bullet and

the following character.
The procedure for deleting the last few characters of the keystroke file is as

follows: Edit the file using Ned. The many bullets on the screen are all the function

and motion keys typed during the last editing session. Find the last line of the file

by moving the window down the file while looking in the left margin. The last line

in the file will have the left margin character "1", while all following lines will have

the left margin character ";".
Now look at the right margin character on that line. If it is a ">", the line is

too long to fit in the window, and it is necessary to move the window to the right

using the RIGHT key (Sec. 11.14) until the right margin character becomes a "I".
Leave the cursor on the last line in the file to mark it, since the left margin

characters which identify it as the last line will be lost once the window is moved

right.
Since lines in the keystroke file may be quite long, the window might have to

be moved quite a distance, using RIGHT with a numeric argument. Using RIGHT,

and LEFT too if necessary, move the window so that the last characters of this last

line are on the screen. Then delete the last few bullet-printing character pairs, by

spacing over them, and save the edited keystroke file by exiting from the Editor.

This edited keystroke file should be able to reproduce the editing session, minus the

last few disastrous strokes, and leave the editor ready for use from the keyboard

at that point in the session.

Chapter 14

MISCELLANEA

14.1. Stopping the Editor in the Middle

Because the editor takes some time to update the screen following such com
mands as +PAGE, it is possible to type another command before the screen has
been completely rewritten. In many cases, the editor will abort writing the screen
and perform the next command. This is done whenever the editor senses that the
screen will have to be rewritten again for the new command. For example, it is
possible to press +PAGE several times in rapid succession without having to wait
for the editor to fill the screen each time.

However, there are several commands, such as + SCH and EXEC, which may
take a long time to perform. Since the keys which usually interrupt a program's
execution are used differently in Ned, there is no way to abort a running command,
or to terminate the editing session other than by using the EXIT key when the editor
is ready to accept a command, short of killing the editor program from another
terminal. Consult an experienced user should this become necessary.

14.2. The /re.std File

The system contains a text file called /re.std. It is the default file which is edited
in several situations when the editor does not have a satisfactory file to look at. It
contains a message to the effect that the file the user tried to look at does not exist.
This can happen when Ned is run without arguments and attempts to determine
the file edited in the previous session. If that information has disappeared (which
may happen overnight), /re.std will be displayed.

14.3. Editor Limitations

The editor is subject to several limitations. It may be used to edit lines of any
length, but cannot edit files containing more than 32,768lines. An attempt to do so
may cause the editor to crash.

No more than 20 tab stops may be set. No more than eight files may be exam
ined or edited during an editing session. At most ten windows may be created.
Exceeding any of these limitations will result in an error message being displayed.

37

Chapter 15

ERROR MESSAGES

This chapter provides further explanation of the error messages which may be

produced by the editor, and suggests some actions to recover from the error situa

tion.
An error message is displayed on the bottom line of the screen, and rings the

terminal's bell (on terminals so equipped). The most frequent causes of error mes

sages are inadvertently striking the wrong key, or trying to perform a function that

makes no sense (such as deleting -3 lines).
Most of the error messages provided by the editor are listed below in alphabeti

cal order, with explanations. Those error messages not listed are likely to indicate

system or editor malfunctions, and, if they persist, should be reported to system

personnel.

"Abnormal termination of program."

Cause: The program invoked by the EXEC key terminated

in an error condition. Perhaps it was given a
wrong number of arguments, or an improper

argument. Perhaps the text specified to be
processed was not acceptable to that program.

Action: Check the validity of the arguments and specified
text.

"Argument must be a string."

Cause: You provided a cursor-defined argument, or a null
argument, to a function expecting a number or a
string.

Action: Redo the function providing an appropriate
argument.

"Argument must be numeric."

Cause: You provided a non-numeric argument to a
function expecting a number. For example, typing

ARG j +LINE

would cause the above error message to be
displayed since the number of lines must be an
integer.

Action: Redo the function providing a positive integer as
an argument.

38

39

"Argument must be positive."

Cause: You provided a negative number as an argument
to a function expecting a positive number. For
example, typing,

ARG -2 OPEN

would cause the above error message to be
displayed since the number of lines to open must
be a positive integer.

Action: Redo the function providing a positive integer as
an argument.

"Badkeyerr- editor error."

Cause: A function key was struck which has no meaning
to the Editor.

Action: Hit another key.

"Can not fork or write pipe."

Cause: The EXEC command has encountered a system
problem while trying to perform the requested
function.

Action: Notify system software support personnel.

"Can't find program to execute."

Cause: The program specified to the EXEC function does
not exist, or perhaps the argument to the EXEC
command was in the wrong format.

Action: Check it out.

"Can't make any more ports."

Cause: You have tried to create more than 10 windows on
the screen. The maximum number permitted is 10.

Action: Discontinue window creation or delete some of the
windows before creating more (see WIN, Sec.
11.11).

"Can't put a window there."

Cause: You have placed the cursor in an unacceptable
position for window creation.

Action: Reposition the cursor correctly (see WIN, Sec.
11.11).

"Can't write in specified directory."

Cause: You tried to save a file in a directory for which
you do not have write permission.

Action: Check your file specification, or save the file in a
directory for which you do have write permission.

40

"Can't write on pipe."

Cause: The EXEC command has encountered a system
problem while trying to perform the requested
function.

Action: Notify system software support personnel.

"DANGER- WRITE ERROR."

Cause: This could be caused by a computer hardware
failure. But it could also be due to attempting to
save on a file to which you do not have proper
access.

Action: Check your file name specification. If it is correct,
attempt the save again. If failure persists, notify
system hardware support personnel.

"Directory does not exist."

Cause: You attempted to edit a file in a nonexistent
directory.

Action: Check your file name specification.

"Feature not implemented yet."

Cause: You have pressed some combination of keys that
the Editor does not recognize.

Action: Try something else.

"File read protected."

Cause: You tried to edit a file which exists, but which is
protected so that you cannot read it.

Action: Change the protection of the file, or give up trying
to edit it.

"First the bad news ... "

Cause: This message indicates a fatal editor malfunction.
The good news is that the work done in your
editing session can most likely be recovered (see
Sec. 13.3). If the message continues ".ran out of
space.", then the problem was due to editing too
large a file, too long a line, or too many long files,
or to making many changes in large files.
Otherwise, the problem is an editor bug. In this
case, it is imperative to preserve the relevant files
so that the bug can be reproduced and fixed.

Action: See "Recovering from Crashes," Sec. 13.3.

"Hit USE (CTRL-B) to make: filename."

Cause: You tried to edit a file that does not exist. It may
have been an argument to the USE function, an

41

argument to the "ned" UNIX command when
starting the editing session, or a file that was
edited in a previous session but could not be found
at the start of the current session because it had
been deleted in the meantime or because the
working directory had been changed, making its
name invalid from the new directory.

Action: Hit USE to create a file by that name. Hit ARG to
abort the attempt to edit that file (see USE, Sec.
11.9).

"Invalid argument."

Cause: The argument you typed is in the wrong format
for the function button you invoked.

Action: See the appropriate section of Chap. 10 for the
correct format for this function.

"Margin stuck; move cursor to free."

Cause: You have tried to type past the end of the line in
view.

Action: Move the cursor or move the window (see RIGHT,
Sec. 11.14).

"Nothing in the CLOSE buffer."

Cause: You have pressed ARG PUT when no lines have
been closed.

Action: Use CLOSE to remove appropriate lines and
repeat the ARG PUT.

"Nothing in the PICK buffer."

Cause: You have pressed PUT when no lines have been
picked.

Action: Use PICK to identify the lines to PUT.

"Nothing to search for."

Cause: You have pressed a +SCHor a -SCH without
having specified a string to search for.

Action: Provide a string as an ARG to a + SCH or a
-SCH.

"Printing character illegal here."

Cause: You typed a printing character while defining a
cursor-defined argument. Only cursor positioning
keys (Chap. 8) are legal here.

Action: If defining a cursor-defined argument, proceed. If
you want to type a numeric or string argument,
press ARG once to abort the current argument and
again to start the argument over (see Sec. 10.1).

42

"Search key not found!"

Cause: The string you specified as an ARG to a + SCH
does not occur between the current cursor position
and the end of the file. For a - SCH the string
does not occur between the current cursor position
and the beginning of of the file.

Action: No corrective action required.

"Specified directory does not exist."

Cause: You attempted to save a file in a nonexistent
directory.

Action: Check your file name specification.

"Too many files- Editor limit."

Cause: You have attempted to edit more than eight files
during an editing session.

Action: EXIT, then run the Editor again using the
command "ned !". This will restore all windows,
files, and alternate files just as before, but if there
are eight or fewer active and alternate files the
limit will not be exceeded.

"Too many tabstops; can't set more."

Cause: You have attempted to set more than 20 tab stops,
including the 10 default stops (unless they were
cleared).

Action: Clear some tab stops before attempting to set more
(see Sec. 11.13).

"You cannot modify this file."

Cause: You have attempted to alter a file which is write
protected.

Action: Cease attempts to change the file.

Appendix A

SUMMARY OF NED FUNCTION KEYS

! Action of ARG Position KEY

Sec. for Action of ARG X KEY i (Position = cursor-

KEY Ref. Action of KEY Action of ARG KEY (X= any argument)a I defined argument)

+PAGE 11;1 Moves window ERRORb X is numeric. Moves I ERROR

-PAGE forward (+) or window forward (+)
backward (-) or backward (-)
one page X pages.

+LINE 11.1 Moves window Moves window so X is numeric Moves ERROR

-LINE forward (+) or CCLc is the first window forward (+)
backward (-) line in window (+) or backward (-)
about% page. or last line in window. X lines.

OPEN 11.2 Inserts a blank Moves the part of X is positive Inserts blank lines or

line above CCL. CCL starting with Inserts X blank rectangles in area

cursor position to lines above CCL. defined by cursor.

a new next line.

CLOSE 11.3 Deletes CCL and Deletes the part X is positive. Deletes lines or

places it in CLOSE of CCL starting Deletes X lines rectangle defined by

buffer. with cursor starting with CCL cursor and puts it in
position replacing and puts them in CLOSE buffer.
it with the line CLOSE buffer.
below CCL.

PICK 11.4 Places CCL in ERROR X is positive Places lines or

PICK buffer. Places X lines rectangle defined by
starting with CCL cursor in PICK buffer.
in PICK buffer.

PUT 11.5 Places contents Places contents ERROR ERROR

of PICK buffer at of CLOSE buffer at
cursor position. d cursor position.d

EXIT 11.6 Exits Editor. All Exits Editor, If X is the letter Exits Editor,

altered files are saving files as in a, exits without saving files as in

written to disk; EXIT case, then writing any files; EXIT case, then

old versions executes most all editing is lost executes most

are rename.J recent ex, load, or and files are recent ex, load, or

"name.bak". compil UNIX command. unchanged compil UNIX command.

+SCH 11.7 Searches forward Searches forward Searches forward (+) ERROR

-SCH (+) or backward (+) or backward or backward (-) for
(-) for the last (-) for the string the string X.
string searched pointed to by the
for (if any). cursor up to the

first blank.

a"X is numeric" means the argument must be a signed integer. "X is positive" means the argument must be an unsigned integer.
If one of these restrictions applies, and an argument violates it, an error message will be given.

b"ERROR" means an error message will be given if this function sequence is typed to the Editor.

cccL is the Current Cursor Line.

dlf buffer contains full lines, CCL and following lines are pushed down to make room for inserted lines. If buffer contains a
rectangular area, its contents are inserted with the cursor position at the upper left-hand comer of the rectangle, and partial lines
to the right of the inserted material are pushed to the right.

43

44

Summary of NED Function Keys (continued)

Action of ARG Position KEY

Sec. for Action of ARG X KEY (Position = cursor-

KEY Ref. Action of KEY Action of ARG KEY (X= any argument)a defined argument)

GOTO 11.8 Moves window so Moves window so X is numeric ERROR

top line is at the last line Moves window so
line 1 of file. is about 1,4 of top line is at

the way down the line X of file
window. (or 0 if X <o).

USE 11.9 Switches window ERROR Edits file with ERROR

(CTRL-B) to alternate name X as current
file; current file; old current
file becomes file becomes
alternate file. alternate file.

SAVE 11.10 Writes current Writes current Writes current ERROR

(CTRL-V) file out on disk. file out on disk file out on file
on file name named X.
taken from cursor
position up to
next blank

WIN 11.11 Makes a new Deletes last Makes a new window ERROR

(CTRL-Z) windov,: with window created. and edits file X
border extending in it.
from cursor position
(which must be next
to a border).

CHWIN 11.12 Switches current ERROR X is numeric. ERROR

(CTRL-C) window to be Switches current
next window. window to be Xth

created window.

S/RTAB 11.13 Sets a tab stop Removes any tab Removes any tab Removes any-tab stop at

(CTRL-[) at cursor column. stop at cursor stop at cursor original cursor column

column. column (X is ignored). (ARG is ignored).

EXEC 12 ERROR ERROR X is a command in the ERROR

(CTRL-X) format [n] prg [arg ...]
(in UNIX notation).
Replaces n paragraphs
(or -n lines if n >O) by
result of running filter
program on that text
with given agruments.
Old paragraphs are
placed in the CLOSE
buffer.

LEFT 11.14 Moves window left ERROR X is numeric ERROR
16 columns or to Moves window left
file boundary, X columns or to
whichever is less. file boundary,

whichever is less.

RIGHT 11.14 Moves window ERROR X is numeric. ERROR
right 16 columns. Moves window right

X columns.

a"X is numeric" means the argument must be a signed integer. "X is positive" means the argument must be an unsigned integer.
If one of these restrictions applies, and an argument -violates it, an error message will be given.

Appendix B

DIAGRAM OF TERMINAL KEYBOARD

45

Appendix C

INDEX OF CAPABILITIES

This appendix lists the various editing operations that can be performed by
Ned. Where appropriate, briefinstructions are given for performing the operation,

and a page reference in this manual is provided for a more detailed explanation.

• To abort an editing session: use ARG a EXIT. See p. 24.

• To close up a rectangle of text in the middle of adjacent lines: use CLOSE with

a cursor-defined argument. See p. 23.

• To create a new file: use USE. See p. 26.

• To create and delete multiple editing windows: use WIN. See pp. 27-28.

• To delete characters from the middle of a line: use DELCHAR, or use BS in insert

mode. See p. 17.

• To delete lines: use CLOSE. See pp. 22-23.

• To duplicate an editing session: run Ned on a keystroke file. See pp. 35-36.

• To edit an argument while typing it: use only BS to erase characters, or ARG to

abort it entirely. See pp. 19-20.

• To edit different files: use USE. See p. 26.

• To erase characters: type over them with the space bar or BS. See pp. 8, 17.

• To fill and/ or justify one or more paragraphs: use fill or just. See pp. 30-32.

• To flip back and forth between two files or between two places in the same file:

use USE. Seep. 26.

• To get back text that has been deleted accidentally with CLOSE; use ARG PUT

or the # file. See p. 34.

• To indicate an area of text for OPEN, CLOSE, or PICK: use a cursor-defined

argument for the function key. Seep. 20.

• To initialize Ned at other than line 1 of a file: seep. 14.

• To insert a file into the file being edited: use cat with EXEC. See p. 33.

• To insert blank lines: use OPEN. See p. 22.

• To insert characters into a file: position the cursor at the desired location and type

the characters. See p. 8.

• To insert one or more characters in the middle of a line: use insert mode. See pp.

8, 17.

46

47

• To make copies of one or more lines: use PICK. See p. 23.

• To modify a function key by an argument: type ARG, the argument, and the
function key. See pp. 19-20.

• To move text between files: use PUT together with USE or multiple windows. See
p. 24.

• To move the cursor rapidly in a horizontal direction: use +TAB and -TAB. See
p. 16.

• To move the cursor rapidly in a vertical direction: type ARG, a number, and a
vertical positioning key. See p. 16.

• To move the window so the current line is at the top or bottom of the screen: use
ARG +LINE or ARG -LINE. Seep. 21.

• To move the window up and down the file: use +PAGE, -PAGE, +LINE, -LINE,
and GOTO. See p. 21.

• To open up a rectangular area in the middle of several adjacent lines: use OPEN
with a cursor-defined argument (or PUT of a blank rectangle). See p. 22.

• To position at a particular line of a file, or at the first or last line: use GOTO. See
p. 25.

• To position the cursor: use the keys marked with arrows and the other cursor
positioning keys. See p. 16.

• To put page ejects into a text file: type QUOT CTRL-L. See p. 18.

• To put the same word or phrase down in many places: see p. 24.

• To put two adjacent lines together to make one long line: use ARG CLOSE. See
p. 22.

• To recover an editing session that ends in a crash: use the keystroke file. See pp.
35-36.

• To replace multiple occurrences of one string by another: use rpl. See p. 31.

• To restore a file to its state before the last edit: use the ".bak" file. See p. 34.

• To restore Ned with all windows from a previous session: use the UNIX command
"ned !". See p. 14.

• To search for a character string: use + SCH and - SCH. See p. 25.

• To set or clear tab stops: use S/RTAB. See p. 28.

• To sort lines of text into alphabetic order: use sort with EXEC. See p. 33.

• To split a line in the middle, making two lines: use ARG OPEN. See p. 22.

• To terminate an editing session and save the files: use EXIT. See p. 24.

• To type control characters into a file: use the QUOT key. Seep. 17.

48

• To type or edit past the right margin: move the window sideways using LEFT and

RIGHT. See p. 29.

• To type text at the end of a file without repositioning the window: use RETURN

at the end of each line, and +LINEs will be performed automatically at the bottom

of the window. Seep. 21.

• To write out an edited file under a different file name: use ARG filename SAVE.

Seep. 26.

REFERENCES

Irons, E. T., and F. M. Djorup, "A CRT Editing System," Communications of the
ACM, January 1972.

Kelly, Jeanne, A Guide to Ned: A New On-Line Computer Editor, The Rand Cor
poration, R-2000-ARPA, July 1977.

Kernighan, Brian, "UNIX for Beginners," Documents for Use with the UNIX Time
Sharing System, Bell Telephone Laboratories, Murray Hill, N.J., undated.

Ossanna, Joseph, "NROFF Users' Manual," Documents for Use with the UNIX
Time-Sharing System, Bell Telephone Laboratories, Murray Hill, N.J., Sep
tember 1974.

Thompson, Kenneth, and Dennis Ritchie, UNIX Programmer's Manual (Sixth Edi
tion), Bell Telephone Laboratories, Murray Hill, N.J., May 1975.

Weiner, P., et al., The Yale Editor "E": A CRT Based Editing System, Yale Comput
er Science Research Report 19, April 1973.

49

INDEX

aborting a session, 24
aborting commands, difficulty of, 37
active window, 14, 15, 27
alternate file, 14, 26, 27, 28, 42
areas, 20, 23, 24
areas, deletion of, 22, 23
areas, duplication of, 23
areas, opening, 24
ARG, 9, 19
argument, aborting, 20, 24
argument, cursor-defined, 20
argument, numeric, 38
argument, positive, 39
argument, string, 38
arguments, 9, 16, 19-20, 24, 30, 31, 32, 35, 37, 38
arguments to EXEC, 1
arguments, typing of, 19
arithmetic, 33
automatic hyphenation, 4, 32

backspace, 8, 17, 18
backup, 34
backward search, 25
bad news, 40
BASIC language, 33
blank lines, inserting, 9, 10, 22, 23, 32, 46
BS, 17
buffer, 23
buffers, 10
bullet, 15, 18, 19, 25, 36
button push file, see keystroke file

CCL, 43
changing a character, 4
changing files, 26
changing windows, 28
characters, deletion of, 6, 17
characters, erasure of, 17
characters, inserting, 8, 17
characters, typing, 8
CHWIN, 28
CLOSE, 10, 22-23
close buffer, 10, 22, 23, 24, 31, 33, 34
closing areas, 10, 20
combining lines, 22
compil, 24
computers, introduction to, 6
control characters in text, 17-18, 36, 47
crashes, recovery from, 35
creating files, 26
creating windows, 34
CRT terminal, v, 5-6
CTRL key, 3
current window, 26-28
cursor, 23, 28, 29
cursor-defined argument, 22-23
cursor position, 24, 25, 26
cursor positioning keys, 41

date, insertion of, 33
debugging, 24
DELCHAR, 8, 17
deleted text, recovery of, 4, 17, 34, 46
deleting characters, 4, 17
deleting lines, 22, 38
deleting rectangles of text, 22
deleting strings, 31
deleting windows, 28
deletion, undoing of, 23
directory, 33, 35, 39, 40, 41, 42
Djorup, Franz M., 5
double spacing, 32
dump, 25, 35
duplicating lines, 23
duplicating session, 14

E, see Yale Editor
editing another file, 26
editing keystroke file, 35-36
editing long lines, 29
editing session, reproducing, 35
editing window, see window
editor commands, 19
editor, crashing, 22, 35
editor, text, iii, v, 3, 4, 5, 6
erasing characters, 17
error messages, vii, 19, 22, 28, 35, 37, 38-42
EXEC, 30-33
execute, 30-33
EXIT, 8, 24

fail-safe features, 34
file, 6
file, creating a new, 26, 40, 42
file, editing another, 26
file, insertion of, 33
file, picking lines to, 33
file, read protected, 40
file, scratch, 7
file, the #, 34
files, saving, 26
fill, v, 4, 22, 23, 30, 32, 37, 46
filling paragraphs, 32
filters, 30
filters, user-provided, 33
form eject, 18
function key, 19, 21-29
function key summary, 43
function keys, how to type, 3

good news, 40
GOTO, 25

high speed text entry, 22
HOME, 16
hyphenation, v, 4, 32

51

IDA editor, 5
indenting paragraphs, 30
indenting text, 32
insert mode, 8, 17
inserting a file, 4, 46
inserting blank lines, 22
inserting characters, 8, 17
inserting the date, 33
inserting words, 8, 17, 24
INSERTMODE, 17
interactive text processing, v, 5
Irons, Edgar Towar, 3

just, 30, 32
justifying text, 31

key search, 25
keys, repeating of, 8
keystroke file, 14, 24, 27, 35, 36, 46, 47

LEFT, 29
left margin characters, 9, 15
limitations, 37
+LINE, 9, 21
-LINE, 9, 21
line number, 9, 14, 25, 28
line, splitting, 22
lines, combining, 22
lines, deleting, 10, 22
lines, duplication of, 23
lines, inserting blank, 10
lines, moving, 10
lines, moving of, 23
load, 24
long lines, 29, 47

margin characters, 9, 15, 17, 22, 24, 27, 28, 36
merging lines, 22
middle, stopping in the, 37
Mostow, D. Jack, 5
moving lines, 10, 25, 26
moving text between files, 24, 26
moving the window, 9, 16, 36
moving window sideways, 29
moving window to line number, 25
multiple windows, 27

Ned, arguments to, 14
Ned, description of, 4
Ned, getting started with, 6-7
Ned, history of, 5
numeric arguments, 9, 16, 19, 21, 22, 28, 29, 36

OPEN, 9, 22
opening areas, 9, 22, 24

52

+PAGE, 9, 21
-PAGE, 9, 21
page, 9, 21
page eject, 18, 47
pagination, 18
paragraphs, 30
paragraphs, filling and justifying, 31-32
paragraphs, indented, 32
PICK, 10, 23
pick buffer, 10, 23
picking lines to a file, 20, 34
ports, see windows
positioning cursor, 8, 16, 17, 19, 20, 24, 27, 47
positioning keys, 8, 16, 17, 19, 20, 24, 27, 47
positioning window at a line, 21
protected file, 40, 42
PUT, 10, 23
put buffer, 10

quitting, 24
QUOT, 17

Rand editor, 5
re, see Rand Editor
read protected file, 40
recovery, 27, 34-35
recovery of deleted text, 34
rectangular areas, 4, 20, 22. 23, 24
regular expression, 31
replacing characters, 8
replacing strings, 30-31
reproducing editing session, 30, 35
restarting editor, 14, 26, 28
/re.std, 37
restoring editor state, 28
retty file, see keystroke file
RETURN, 16, 21
return, 16, 21
RETURN on bottom line, 9
RIGHT, 29
right margin characters, 22, 24, 36
right margin of justified text, 31
Ritchie, Dennis, 33
rpl, 30, 31, 47

SAVE, 26
saving files, 8, 26, 27
saving on another file, 27
+SCH, 25
-SCH, 25
scratch file, 7
search, 25
search backward, 25
search, interrupting, impossibility of, 25
search string, 25
Singh, I., 5
sorting, 33
space, 8, 16, 17, 24, 32, 33, 46
splitting a line, 21
S/RTAB, 28
string deletion, 31
string substitution, 30, 31
summary of function keys, 43-44
system failures, 34

+TAB, 16
-TAB, 16
tab left, 16
tab stops, clearing, 16, 28-29, 47
tab stops, setting, 16, 28-29, 37, 42, 47
terminal, 3, 4, 5, 6, 7, 8, 19, 35, 45
terminating, 24
text beyond right margin, 22, 24
text editor, iii, v, 3, 4, 5, 6
text file, v, 4, 6, 18, 36, 37, 47
text justification, 31-32
text, moving between files, 26
text processing, 30-33
Thompson, Kenneth, 33
typing characters, 8
typing function keys, 3

USE, 26
user-provided filters, 5

53

Weiner, Peter Gallegos, 5
wide files, 29, 47
WIN, 27
window, 9
window, moving of, 9
window, moving sideways, 29
window positioning, 21
window, positioning at a line, 21
windows, changing current, 28
windows, creation of, 27
windows, deletion of, 28

Yale Editor "E", 5

RAND/R-2176-ARPA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

